

(Source: Introduction to the Power IC market 2018, Yole Développement, October 2018)

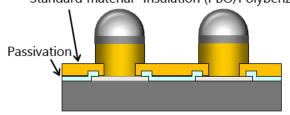
Large market share of LDO and DC-DC converter ICs

(Source: Yole Développement)

2018-2024 advanced packaging revenue forecast split by platform

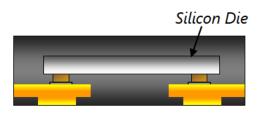
(Source: Status of the Advanced Packaging Industry 2019 report, Yole Développement, 2019)

50 20% CAGR2018-2024 -8% 45 16% 40 30 25 10% 20 15 Flip Chip 10 0% 2022 2023 2024 2021 Embedded Die Total -YoY growth (%) Source: Yole, 2019


Flip Chip Capacity forecast breakdown by Flip Chip Technology

Cu-pillar Market expansion

OUME Electronics : Cu Pillar Bump Over 10 years of experience


Standard material Insulation (PBO/Polybenzoxazole)

- •Form solder height up to ½ of pillar dia.
- ·Formable up to 20um Pillar dia.
- ·RDL lamination layer (Sample result; 3 layers) ...Under development

◆ AOI Electronics : Package Assembly

- ·Flip-chip C4.
- ·Large format matrix Lead flame
- · Wettable flank

... Under development

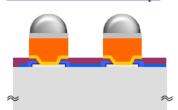
Turnkey processing

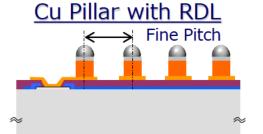
①Sub 6GHz(RF) : RF-Switch/Antenna Tuning Switch etc.

⇒Low Coff, Low Insertion loss

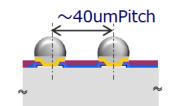
②Power IC : DCDC Converter IC, LDO, PMIC etc.

⇒Low Inductance(Low EMI), Low Resistance

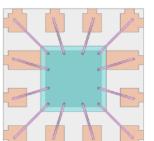

for Automotive Fsw;2MHz1, Wettable flank


Cu Pillar/Micro Bump technology road map

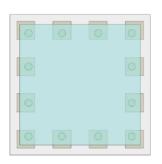
We can offer Cu Pillar Bump / Micro Bump as a terminal for flip chip connection. [Unit: μm]

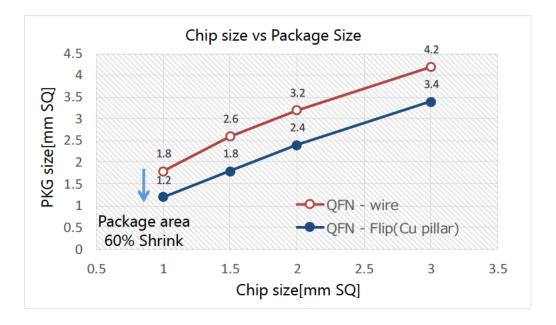

Road Map		Typical		2021/M~			2022			
SIZE		6inch	8inch	12inch	6inch	8inch	12inch	6inch	8inch	12inch
Þ	Bump Space	NA	75	75	75	60	60	70	60	60
Standard	Min terminal diameter	NA	75	75	75	60	60	70	60	60
Sta	Max terminal height	NA	65	65	53	70	70	65	70	70
Custom	Bump Space	NA	50	70	NA	40	40	NA	35	35
	Min terminal diameter	NA	50	70	NA	40	40	NA	35	35
	Max terminal height	NA	50	45	NA	65	45	NA	70	50
Terminal structure		SnAg/Cu		SnAg/Ni/Cu (8inch) SnAg/Cu		SnAg/Ni/Cu SnAg/Cu				

Micro Bump (Solder)



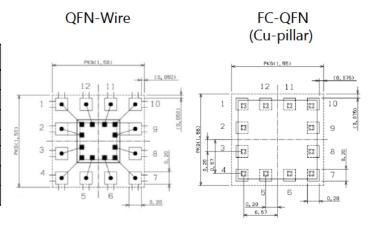
Advantage: Miniaturization and High functionality

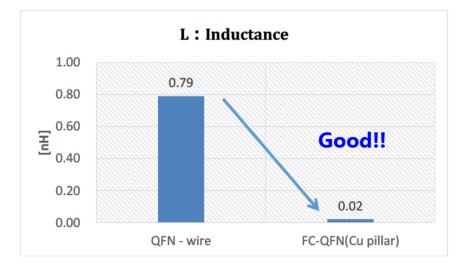

No.	1	2	3	
Package size 1.5mm SQ		1.5mm SQ	2.2mm SQ	
Chip size	1.33mm SQ	0.7mm SQ	1.33mm SQ	
PKG structure	QFN Flip chip	QFN wire		

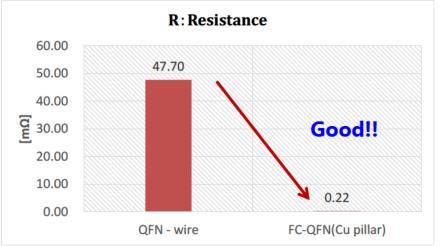

Package structure

Wire type

Flip chip type

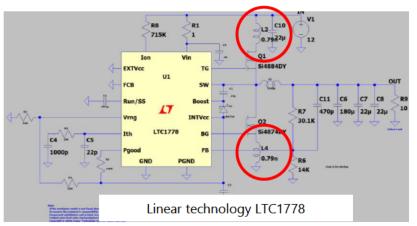



Expected to be Miniaturization and highly functional (large chip size can be installed)


Advantage: Low Electrical Parasitic properties

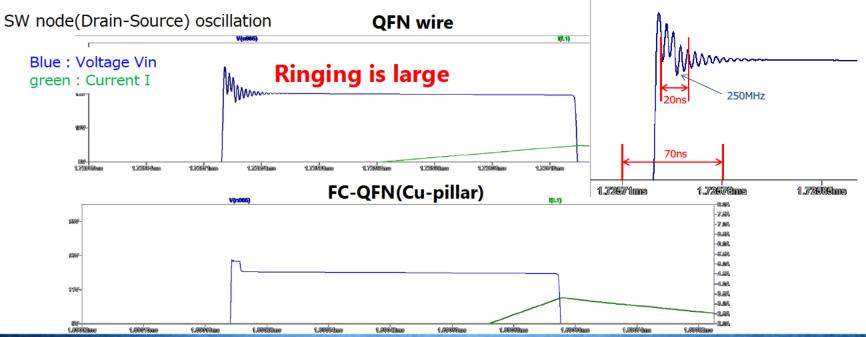
Flectrical Parasitics Comparision (Per one)

Electrical randolder companion (ref one)						
	QFN - wire	FC-QFN(Cu pillar)				
Package size [mm]	1.5mmSQ	1.5mmSQ				
Chip size [mm]	0.70×0.70	1.33×1.33				
Lead frame thickness	Cu 0.125mmt	Cu 0.125mmt				
Internal wiring	Au wireΦ23μm	Cu pillarФ80µm/Height50µm				
Terminal size	0.2×0.2mm	0.2×0.2mm				
L : Inductance [nH]	0.79	0.02				
R : Resistance [mΩ]	47.70	0.22				



Flip chip QFN Packge can achieve Low Inductance and Low Resistance. Expected to improve ripple in DC-DC converter IC.

LTSpice @ Step down DC-DC Converter IC

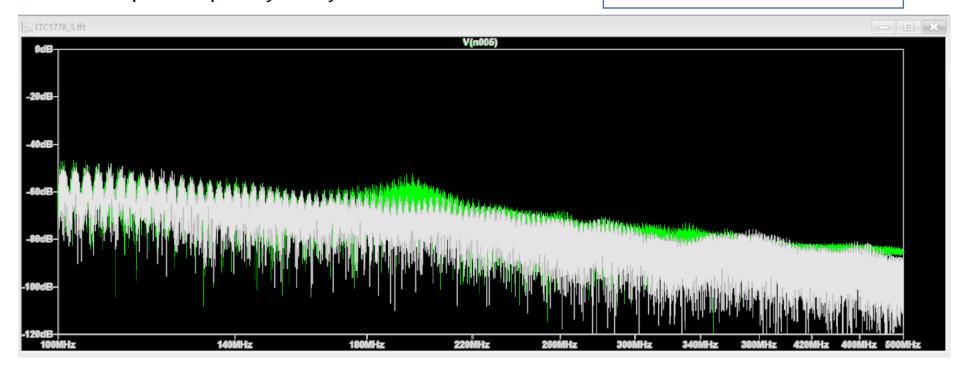

Added parasitic Inductance

QFN wire: L=0.79nH

FC-QFN(Cu-pillar): L=0.02nH

@frequency:500kHz

Ringing in 250MHz class



LTSpice @ Step down DC-DC Converter IC

FFT Output frequency analysis

QFN wire 0.79nH(green)

FC-QFN 0.02nH(gray)

EMI improvement is about 10 dB@200MHz. EMI improvement of 3 to 5 dB above 220MHz.

Thermal resistance Simulation(steady state)

		QFN wire A	QFN wire B	QFN Flip chip	
Package structure					
Package size		1.5mm SQ	2.2mm SQ	1.5mm SQ	
Chip size		0.7mm SQ	1.33mm SQ	1.33mm SQ	
4-layer board	Thermal resistance [°C/W]	153	103	88.4	
(No via)	PD [W]	0.65	0.97	1.13	

• Boundary condition

※ PD: Tj=125℃, Ta=25℃

- Atmospheric temperature : 0℃ ※Assumption: No radiant heat dissipation
- Calorific value: 1W (The heat generation density is set uniformly on the chip surface.)
- Mounting board
 - 1/2 symmetry (JEDEC51-7, 4-layer board 38.1x114.3xt1.6)

The heat generation density is small due to the large chip area of FCQFN

Thermal resistance Simulation(steady state)

		QFN wire A	QFN Flip chip			QFN wire A	QFN Flip chip
Heat generation density [W/mm ³]		204.1	56.5	ution	surface	4	56
Heat dissipation distribution	Whole package			Heat dissipation distribution	Тор		
	Package expansion		8	Heat	Cross-section	Heat diffuses in the	Heat diffusion in the lateral
	Packa					substrate thickness direction	direction of the board from the terminals
resis	rmal tance /W]	152.7	88.4	[]	180 100 90 80 70 60		
PD [W] (Tj=125°C, Ta=25°C)		0.65	1.13	ΔT [°C]	50 40 30 20 10 0		

<u>ATTENTION</u>

This material contains confidential information and it is hereby notified that any disclosure, copying, distribution, or the taking of any action in reliance on the contents of this material is strictly prohibited without a prior written consent of AOI Electronics. Thank you very much for your understanding in advance.